

07.18.2020

Andrés, Audrey, Daniel, and Joyce

Recap of last week

Join at www.kahoot.it (phone, tablet, or computer are OK)

With Game PIN 8993465

We will start the game when everyone has joined

Recap answers

86 BILLION neurons, over 100 trillion synapses

Electrical signals flow one direction. This is called an action potential

Outline for today

What is Alzheimer's Disease?

- Stages, symptoms, and risk factors
- Changes in the brain

Biology of AD

- Amyloid beta and tau hypothesis
- Laboratory models of AD
- Clinical trials

New possible treatment from MIT

Alzheimer's disease (AD)

Most common cause of dementia

Associated with age

Life expectancy after diagnosis: 3-9 years

Age is the biggest AD risk factor

Early stages of AD

- General forgetfulness
- Impaired short-term memory
- Confusion in unfamiliar places or situations

Middle stages of AD

- Substantial memory impairments
- Difficulty performing everyday tasks
- Problems with speech, coordination, and attention
- Personality changes

Late stages of AD

- Complete dependence on caregivers
- Near total loss of speech
- Loss of mobility and muscle mass

Anatomy of AD progression

Symptoms: Short-term memory loss Symptoms include: Reading problems Poor object recognition Poor direction sense Symptoms include: Poor judgment Implusivity Short attention Symptoms include: Visual problems

How is AD diagnosed?

There is no conclusive test for AD. It can only be conclusively diagnosed after death.

Potential methods to diagnose AD are being developed and tested:

- MRI and PET imaging
 - Structure
 - Brain activity
 - Metabolism
 - Amyloid/tau presence
- Cerebrospinal fluid (CSF) sampling

The biology of AD

Large-scale changes in AD

Neurodegeneration

The progressive loss of structure or function of neurons

- Reduced cell number (cell death)
- Reduced brain volume (atrophy)

Region-specific degeneration can cause specific cognitive deficits.

Molecular signature of AD

Role of amyloid in AD

Extracellular amyloid beta deposits contribute to neuronal damage in AD.

Plaques

Why do we have amyloid?

Amyloid beta could have a protective anti-microbial function:

- Binds to cell wall of microbes
- Blocks microbes from sticking to healthy host cells
- Traps bacteria within a resistant matrix

Role of tau in AD

Healthy tau:

- Normally found in axons
- Stabilizes cytoskeleton

Neurofibrillary tangles:

- Tau separates from cytoskeleton
- Tau aggregates within NFTs
- Cytoskeleton becomes unstable

Spread of amyloid, tau, and neurodegeneration

Spread of amyloid, tau, and neurodegeneration

Genetic risk factors for AD

AD is mostly NOT inherited

Familial AD (fAD)

Inherited (genetic) cause

Sporadic AD (sAD)

- No family link
- Likely caused by genetics and lifestyle

Early onset

(<10% of cases)

- Before age 65
- Genetic causes
- More likely to be fAD

Late onset

(>90% of cases)

- After age 65
- More likely to be sAD

Breakdown of AD cases

Modeling AD in the lab

Knowledge of amyloid and tau has allowed scientists to create models of AD to study potential mechanisms and treatments for AD.

Mouse models

Cell culture

Primary mammary epithelium

Human tissue

Treatments for AD

Exercise, memory training, and social engagement can lower risk and improve quality of life.

Two classes of approved drugs:

- Acetylcholinesterase (AChE) inhibitors
- NMDA receptor (NMDAR) antagonists

These treat disease symptoms, but don't slow/stop AD.

Clinical trials in the US

A typical drug costs **\$1B** to get approved. An AD drug costs **\$5.7B**.

Many try, but few succeed

Potential new treatments

Questions?

